

MICE ...and the next generation of muon beams for particle physics

K. Long, 6/4/15

The Standard Model

Fundamental - Particles & forces

- Understanding:
 - Symmetries
 - Conservation laws
 - Dynamics

And yet ...

... our understanding remains incomplete

- Hypothesis:
 - The Standard Model is sufficient
- Test through study of Higgs at LHC, ILC, FCC, MC ... :
 Requires exquisite precision; √s □ 1 TeV

... our understanding remains incomplete

... our understanding remains incomplete

The Particle Universe

15 BILLION YEARS

Dark matter

Galaxy/star formation

Removal of anti-matter

Inflation

Improved understanding will have impact beyond particle physics

Muon beams have the potential to

- Serve neutrino physics with intense beams that have:
 - Precisely known flavour content;
 - Precisely known energy spectrum
- Provide multi-TeV lepton-anti-lepton collisions:
 - With extremely small energy spread;
 - Most cost-effective means to achieve $E_{CM} > 1$. TeV

- Muon beams for particle physics
- Ionization cooling
- Muon Ionization Cooling Experiment (MICE)
- Historical interlude
- Vision for a cold, bright future for muon beams
- Conclusions

MICE and the next generation of muon beams for particle physics

MUON BEAMS FOR PARTICLE PHYSICS

Muon beams; basis of advantages

Muon mass:

 $-m_{\mu}$ = 106 MeV/c² ≈ 200 * m_{e}

- Consequences:
 - Negligible synchrotron radiation during acceleration:
 - Rate $\propto m^{-4} \Rightarrow$ reduction of factor 5 \times 10⁻¹⁰ over *e*
 - Strong coupling to Higgs:
 - Production rate $\propto m^2 \Rightarrow$ enhancement 5×10^4 over e^+e^-

Muon Collider:

- Optimum route to multi-TeV lepton-anti-lepton collisions:
 - Muon mass; 200 times that of the electron mitigates:
 - Synchrotron radiation;
 - Beamsstrahlung
 - Muon rigidity allows efficient acceleration
 - Results in cost-efficient acceleration to very high energy
- Luminosity critical:
 - Muon-beam cooling essential

A COMPLETE DEMONSTRATOR OF A COOLED-MUON HIGGS FACTORY

Monday, 18 May 2015 at 3:30 pm Fermilab, Ramsey Auditorium

In analogy with the discovery of the W and Z with hadrons and the subsequent study of the Z resonance in the pure s-state with LEP, the recent discovery of the Higgs particle of 125 GeV has revised the interest in the so-called second generation Higgs factory. However the direct production of the H^o scalar resonance in the s-state has a remarkably small, narrow width, since $\Delta E/E < 4$ MeV / 125 GeV = 3.2×10^{-5} . We describe here a $\mu^{+}\mu^{-}$ collider at a modest energy of 62.5 GeV and the adequate cooled muon intensity of about 6 x 10¹² muons of each sign, a repetition rate of 15-50 p/s and L $\approx 10^{42}$ cm⁻² s⁻¹, corresponding to about 10'000 H^o for each detector x year. Its partial widths can be studied with remarkable accuracies. With the help of the decay frequency of the polarized muon decay electrons, the H^o mass itself can also be measured to about ±100 keV, i.e. $\Delta m/m \approx 10^{-6}$.

The next modest step, prior to but adequate for the subsequent H^o physics programme, could be the practical realization of an appropriate *muon cooling demonstrator*. Starting from a conventional pion beam, the required longitudinal and transverse emittances are achieved with a cascade of two unconventional but very small muon rings of few meters radius. Low momentum muons of about 250 MeV/c, initially with $\Delta p/p \approx 0.1$, are cooled in a first ring, extracted and ionization cooled to about 70 MeV/c, and cooled ultimately in a second small ring up to a longitudinal momentum spread of 0.7 MeV/c r.m.s. The operation of the demonstrators may be initially explored and fully demonstrated with the help of a modest muon beam already available in a number of different accelerators.

The additional but relatively conventional components necessary to realize the facility with the appropriate muon current and luminosity should then be constructed only after this *initial cooling experiment* has been successfully demonstrated. The ultimate $\mu^*\mu^-$ collider for a Higgs Factory may be situated within the existing CERN site or elsewhere.

U.S. DEPARTMENT OF OF OF Science

🛟 Fermilab

http://map.fnal.gov/events/CarloRubbia.shtml

rans. Emittance (mm rad)

Muon beams; basis of advantages

Muon decay described precisely by SM

μ

Charge to mass ratio favourable:

Readily tune neutrino-beam energy

Neutrino Factory

- Optimise discovery potential for CP and MH:
 - Requirements:
 - Large $v_e (v_{\overline{e}})$ flux
 - Detailed study of sub-leading effects
- Unique:
 - Large, high-energy
 v_e (v_e) flux
 - Muon-beam cooling huge advantage
 - Optimise event rate at fixed L/E
 - Optimise MH sensitivity
 - Optimise CP sensitivity

Appearance $\nu_{\alpha} \rightarrow \nu_{\beta}$ $\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}$ CPT: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha});$ $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha})$

CPiV:
$$\frac{P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})}{P(\nu_{\alpha} \rightarrow \nu_{\beta}) + P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})}$$

MH:
$$P(\nu_{\alpha} \to \nu_{\beta}); P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

 $[P(\nu_{\alpha} \to \nu_{\alpha})]$

$$(\theta - \frac{\pi}{4}): \qquad P(\nu_{\alpha} \to \nu_{\beta}); P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

and $P(\nu_{\alpha} \to \nu_{\alpha})$

Neutrino Factory:

Two approaches:

- Optimise L and E to match magnetised Fe/scintillator

- IDS-NF approach:
 - 1.4% signal
 - 20% background

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

- Magnetised Iron neutrino Detector (MIND): 100 kton
- Octagonal plates and toroidal fie d (as in MINOS)
- Magnetic field 1.2-2.2 T from 100 kA current

Neutrino Factory

Two approaches:

— Optimise L and E to match detector threshold

• IDS-NF approach:

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

Exploit LAr detector sited 1300 km from FNAL

• MAP/MASS approach:

- Neutrinos from a Muon Accelerator CompleX (NuMAX) – Add small amount of 6D cooling
 - Neutrino Factory with 5×10²⁰ straight muon decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford

Bayes, Coloma, Huber

Neutrino Factory

17

Neutrino Factory & Muon Collider concept

Accelerator challenges

• High-power, pulsed proton driver:

- Development of high-power, pulsed proton source underway at proton labs

• Pion-production target:

- MERIT experiment
 - Proved principle of mercury jet target

• Muon front end:

- MuCool programme at FNAL:
 - Study of effect of magnetic field on high-gradient, warm, copper cavities;
- MICE experiment at RAL:
 - Proof of principle of ionization-cooling technique

Rapid acceleration:

- EMMA experiment at DL:
 - Proved principal of non-scaling FFAG technique

MICE and the next generation of muon beams for particle physics

IONIZATION COOLING

Neutrino Factory

Requirement is to maximise rate:
 – Transverse (4D) cooling sufficient

Contains 6coils & 6 cavities = total length 5.746m

Muon Collider

 Requirement is tiny emittance
 - 6D cooling essential

Muon Collider: cooling system

MICE and the next generation of muon beams for particle physics

MUON IONIZATION COOLING EXPERIMENT ... MICE

MICE:

- MICE approved to:
 - Design, build, commission and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions
 - Results will allow Neutrino Factory [and Muon Collider] complex to be optimised
- Requirements:
 - Normalised transverse emittance: 0.1%
 - Requires selection of 99.9% pure muon sample

Cooling demonstration; performance:

MICE Muon Beam

MICE Muon Beam

Beam-line instrumentation

MICE Muon Beam

Characterisation of the MICE Muon Beam

- Iterate to determine trace-space parameters:
 - Initial estimate of p_z from TOF
 - $-(x_0,y_0)$, (x_1,y_1) and $M_{x,y}(p_z)$ used to determine tracespace parameters
 - Updated estimate of p_z from trace space parameters
- Corrections applied for energy loss in air and material

MICE trackers

• 350 μm scintillating-fibre tracker:

10

15

20

25

Light Yield (PE)

- 10 p.e./mip demonstrated with cosmics
- 470 μm intrinsic resolution per plane
- MC: delivers per-cent level emittance measurement

2000

5

Mylar

(b)

213.5

627.3

277.3

Calorimetry

Single cavity modules

Study of factors that affect cooling:

Measure a change in

emittance

 $\frac{p}{E} = \beta$, $E = \sqrt{p^2 + m_\mu^2}$

depends on D2 selection

Ionisation

Cooling

Depends on upstream beam

de

line (mostly diffuser)

Depends on magnetic lattice

Depends on material

 $\frac{\beta_t (13.6 \text{ MeV})^2}{2\beta^3 E m_\mu X_0}$

|dE|

Multiple

scattering

- Emittance:
 - MICE Muon Beam optics and diffuser settings
- Material:
 - Absorber change (LH2; LiH);
- *p*, *E* and β:

Data taking: summer 2015 to summer 2016 Commission has started (in parallel to completion of the build)

MICE Step IV

"Step IV"; 2015/16

0

2

3

Z Position / m

5.6

5.5

-3

-2

-1

MICE and the next generation of muon beams for particle physics

HISTORICAL INTERLUDE

Neutrino & the Standard Model

1950	1960	1970	1980	1990	2000	2010	2020	2030

The dark age!

Discovery of muon neutrino: v_{μ}

Innovation, the first neutrino beam:

- Increase neutrino flux by order of magnitude:
 - Focus π/K produced in proton-target interaction:
 - Ideally point to parallel;
 - Requires toroidal magnetic field

• Requires:

- Extracted, pulsed proton beam

Innovation, the first magnetic horn:

Simon van der Meer CERN, 1961

Confirmation: muon-/electron-neutrino universality

Discovery of neutral currents:

- Development ... of beam and detector:
 - Improved horn:
 - Parabolic; with neck and downstream toroids
 - Improved detector:
 - Gargamelle

nucleus

Neutrino & the Standard Model

Neutrino oscillations

Super-Kamiokande

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}});$$

T2K: electron-neutrino appearance:

T2K: electron-neutrino appearance:

T2K systematic uncertainty Bordoni, Neutrino'14

		\mathbf{v}_{μ} sample	v_{e} sample	
$\boldsymbol{\nu}$ flux and	w/o ND measurement	21.8%	26.0%	
cross section	w/ ND measurement	2.7%	3.1%	
ν cross section d nuclear target bt	ue to difference of w. near and far	5.0%	4.7%	
Final or Seconda	ry Hadronic Interaction	3.0%	2.4%	
Super-K detector		4.0%	2.7%	
total	w/o ND measurement	23.5%	26.8%	
	w/ ND measurement	7.7%	6.8%	

Fractional error on number-of-event prediction

T2K collaboration, PRL 112.061803 2014

Fogli et al; <u>10.1103/PhysRevD.89.093018</u> Schwetz et al; <u>10.1007/JHEP11(2014)052</u>

Standard Neutrino Model:

Standard model and LBL oscillations

LBNF/DUNE:

Long-Baseline Neutrino Experiment:

- Source:
 - -FNAL MI: 700 kW
 - -Project X: 2.3 MW [upgrade]
- Detector: LAr TPC
 - -Fiducial mass: 10 kTonne
 - Upgrade to 34 kTonne
 - -Site: SURF
 - On axis; upgrade u/g 4850 ft
 - Baseline 1300 km

Long-Baseline Neutrino Experiment:

- Systematic uncertainties:
 - Signal: 1%
 - Background: 5%

Systematic uncertainty	Sensitivity	Required Exposure
0 (statistical only)	3σ , 50% δ_{cp}	100 kt.MW.yr
0 (statistical only)	5 σ , 50% δ_{cp}	400 kt.MW.yr
1%/5% (Sig/bkgd)	3σ , $50\% \delta_{cp}$	100 kt.MW.yr
1%/5% (Sig/bkgd)	5 σ , 50% δ_{cp}	450 kt.MW.yr
2%/5% (Sig/bkgd)	3 σ , 50% δ_{cp}	120 kt.MW.yr
2%/5% (Sig/bkgd)	5 σ , 50% δ_{cp}	500 kt.MW.yr
5%/10% (no near $ u$ det.)	3 σ , 50% δ_{cp}	200 kt.MW.yr

arXiv:1307.7335

Standard model and LBL oscillations

M. Nessi; CERN Neutrino Platform

Innovation in detectors

Neutrino extension

Neutrino beams

Lah	Veer	p o	Protons/pulse	Secondary Decay pipe		<e></e>	Exporimonto	
Lap	rear	(GeV/c)	(10 ¹²)	focusing	length (m)	(GeV)	Experiments	
BNL	1962	15	0.3	bare target	21	5	Spark Ch. Observation of 2 vs	
CERN	1963	20.6	0.7	1 horn WBB 60 1.5 HLBC, s		HLBC, spark ch.		
ANL	1969	12.4	1.2	1 horn WBB 30 0.5 Sparl		Spark Chamber		
CERN	1969	20.6	0.63	3 horn WBB	60	1.5	HLBC, spark ch.	
ANL	1970	12.4	1.2	2-horn WBB	30	0.5	12' BC	
CERN	1972	26	5	2 horn WBB	60	1.5	GGM, Aachen-Pad.	
FNAL	1974	300	10	dichromatic NBB	400	50, 180	CITF, HPWF, 15' BC	
FNAL	1975	300, 400	10	bare target	350	40	HPWF	
FNAL	1975	300, 400	10	Quad. Trip., SSBT	350	50 <i>,</i> 180	CITF, HPWF	
BNL	1976	28	8	2-horn WBB	50	1.3	7' BC, E605, E613, E734, E776	
FNAL	1976	350	13	1-horn WBB	400	100	HPWF, 15' BC	
CERN	1977	350	10	dichromatic NBB	290	50, 150	CDHS, CHARM, BEBC	
CERN	1977	350	10	2 horn WBB	290	20	GGM, CDHS, CHARM, BEBC	
IHEP	1977	70	10	4 horn WBB	140	4	SKAT, JINR	
FNAL	1979	400	10	2-horn WBB	400	25	15' BC	
BNL	1980	28	7	2-horn NBB	50	3	7' BC, E776	
CERN	1983	19	5	bare target	45	1	CDHS, CHARM	
FNAL	1991	800	10	Quad Trip.	400	90 <i>,</i> 260	15' BC, CCFRR	
CERN	1995	450	11	2 horn WBB	290	20	NOMAD, CHORUS	
FNAL	1998	800	12	SSQT WBB	400	70 <i>,</i> 180	NuTeV exp,Äôt	
KEK	1998	12	5	2 horn WBB	200	0.8	K2K long baseline osc.	
FNAL	2002	8	4.5	1-horn WBB	50	1	MiniBooNE	
FNAL	2005	120	32	2-horn WBB	675	Apr-15	MINOS, MINERvA	
CERN	2006	450	50	2 horn WBB	998	20	OPERA, ICARUS	
FNAL	2009	120	70	2-horn NBB	675	2	NOvA off-axis	
JPARC	2009	40	300	3 horn NBB	140	0.8	Super K off-axis	

Effect of systematics:

 Performance rapidly degrades if systematic error is not controlled at the several % level
 Cross section error makes a critical contribution

MICE and the next generation of muon beams for particle physics VISION FOR A COLD, BRIGHT FUTURE FOR MUON BEAMS

Potential

• Posit #1:

-%-level measurement of $v_e N$ cross sections will be required

nuSTORM and cross section measurement:

- nuSTORM event rate is large:
 - Statistical precision high:
 - Can measure double-differential cross sections

CCQE cross section measurement:

- Systematic uncertainties for CCQE measurement at nuSTORM:
 - Six-fold improvement in systematic uncertainty compared with "state of the art"
 - Electron-neutrino cross section measurement unique

nuSTORM serving the CERN Neutrino Platform

under study; M. Nessi et al

Potential

• Posit #1:

– %-level measurement of $v_e N$ cross sections will be required

- Posit #2:
 - Neutrino Factory capability likely required
 - Beyond next-generation precision required to:
 - Establish the SvM as the correct description of nature:
 - Determine precisely the degree to which θ_{23} differs from $\pi/4$
 - Determine θ₁₃ precisely
 - Determine θ₁₂ precisely
 - Search for deviations from the SvM:
 - Test the unitarity of the neutrino mixing matrix
 - Search for sterile neutrinos, non-standard interactions, ...

Potential

€transverse [mm rad]

Posit #1: igodol

-%-level measurement of $v_e N$ cross sections will be required

Posit #2: \bullet

- Neutrino Factory capability likely required

- **Posit** #3:
 - Capability to deliver multi-TeV I+I- collisions likely required

Vision

7th February 2015

• Posit #1:

- %-level measurement of $\mathbf{v}_{e}\mathbf{N}$ cross sections will be required

- Posit #2:
 - Neutrino Factory capability likely required
- Posit #3:

MICE

- Capability to deliver multi-TeV *I*⁺*I*⁻ colissions likely required

A proposal for discussion:

- It is proposed to develop an international team with the aim of designing, financing and constructing the above described cooling muon ring for the Initial Cooling Experiment.
- A campaign of extensive measurements, hopefully confirming the expectations of muon cooling theory could then be performed, starting for instance with a single proton bunch and the CERN-PS accelerator.
- Alternatively, this experiment might be realized either at the Fermilab Booster, at the BNL-AGS or even elsewhere (UK, Switzerland). FNAL_MAY 2015

H

MICE

MICE and the next generation of muon beams for particle physics

CONCLUSIONS

Muon accelerators and MICE

- Muon accelerators have the potential to:
 - Serve the next generation long- and short-baseline programmes by:
 - Making precise measurements of *electron-* and muon-neutrino nucleus cross sections
 - Revolutionise the study of neutrino oscillations:
 - And make searches for sterile neutrinos of exquisite sensitivity
 - Provide a route to multi-TeV lepton-antilepton collisions;
- Development of the capability to deliver the Neutrino Factory is required:
 - To study CP-invariance violation in detail if it is discovered; or
 - To continue the search of it is not; and
 - To deliver precision sufficient to elucidate the underlying physics
- MICE will unlock the exploitation of muon accelerators by providing the essential demonstration of ionization cooling:
 - Starting <u>now</u>:
 - Investigation of the effect of material, emittance, momentum on the cooling effect
 - Starting 2017:
 - Demonstration of ionization cooling;
 - Systematic study of factors that affect cooling performance
- Basis for executing the vision!